RealQ Fast 2x Master Mix Green

Cat. No.: A463403 500 reactions (25 µl)

R463403

RealQ Fast 2x Master Mix Green		ROX Internal Reference Dye 200 μΜ		
ID No.	5030300-1250	5700300-0050		
Cap colour	Amber	Amber		
Content	5 x 1.25 ml	1 x 0.05 ml		

Contents

RealQ Fast 2x Master Mix Green is a ready-to-use, optimized 2x master mix for dye-based real-time PCR. ROX is included for PCR real-time instruments requiring an internal reference dye.

- RealQ Fast 2x Master Mix Green: optimized buffer system, 2Taq Hot Start DNA Polymerase, dNTPs, and fluorescent dye.
- 200 μM ROX internal reference dye.

Compatibility

All real-time PCR instruments with a FAM/SYBR filter (addition of ROX may be needed, see Table 1).

Recommended Storage and Stability

Temperature	Duration
Room temperature	Up to 3 days
4° C	Up to 3 months
-20° C	Long term. See expiry on tube

Multiple freeze-thaw cycles should be avoided. Solutions containing fluorescent green DNA dye should be protected from light whenever possible.

ROX Reference Dye

ROX is used as passive reference dye in qPCR. The addition of ROX enables fluorescence normalization which helps to achieve a higher level of precision. The required concentration of ROX depends on the real-time PCR instrument – see table below.

Final ROX concentration	Real-time PCR instrument
0 nM	Bio Molecular: Mic qPCR Cycler Bio-Rad: iCyclerR iQ, iQ5 and MyiQ [™] , OpticonR, CFX 96, CFX 384 Roche: LightCyclerR 480, LightCycler 96, LightCyclerR 2.0, iCycler iQ System Corbett: Rotor-Gene [™] 3000, 6000, Rotor-Gene Q Eppendorf: MasterCycler [™] ep realplex Cepheid: Smart Cycler MyGo: Mini and Pro
30 nM	Applied Biosystems: ABI 7500 and ABI 7500 Fast, ABI ViiA7 Agilent: Mx3000 [™] , Mx3005P [™] , and Mx4000 [™] , Mx4000R, AriaMx
300 nM	Applied Biosystems: ABI 5700, 7000 PRISM, 7300, 7700, 7900, 7900, 7900HT and 7900HT Fast, StepOne™, StepOnePlus™

Stenhuggervej 22 5230 Odense M Denmark

Protocol

Allow master mix to reach room temperature. Ensure sufficient mixing of the master mix (i.e. by vortexing) prior to reaction assembly.

1. Combine master mix, primers, template DNA and water according to the following table.

Table 2: Recommended reaction setup

Component	Vol./reaction	Final concentration*
RealQ Fast 2x Master Mix	12.5 µl	1x
Primer A (10 µM)	0.5 μl (0.2 – 1 μl)	0.2 μM (0.1 – 0.5 μM)**
Primer B (10 µM)	0.5 μl (0.2 – 1 μl)	0.2 μM (0.1 – 0.5 μM)**
200 µM ROX	X μl***	30 nM – Low ROX (Optional) 300 nM – High ROX (Optional)
PCR-grade H ₂ O	Χ μΙ	-
Template DNA	ХμΙ	genomic DNA: 20 ng (1 – 100 ng) plasmid DNA: 0.5 ng (0.1 – 1 ng) bacterial DNA: 5 ng (1 – 10 ng)
Total volume	25 μΙ	-

Suggested starting conditions, optimisation range in parenthesis.

** Optimization of primer and probe concentrations is highly recommended.
*** Prepare fresh 1:10 or 1:100 dilutions of 200 μM ROX with PCR-grade H₂O to increase transferred volume.

- **** Reaction volumes < 10 µl is not recommended. Smaller reaction volumes decrease signal intensity.</p>
- **2.** Mix the components thoroughly, then centrifuge to collect liquid at the bottom of the tube.
- **3.** Transfer the appropriate volume to an optical plate or strip compatible with the chosen real-time PCR instrument. Seal the plate / strip.
- 4. Set up PCR program using one of the following settings:

Table 3: Standard 2-step cycling conditions.

STANDARD	Step	Temperature	Duration	Cycle
	Activate enzyme ^a	95°C	2 min	1
	Denature	95°C	15 sec	40
	Anneal/extend ^b	60°C	60 sec	40

Table 4: Fast 2-step cycling conditions.

	Step	Temperature	Duration	Cycle	
FAST	Activate enzyme ^a	95°C	2 min	1	
	Denature	95°C	5 sec	40	
	Anneal/extend ^b	60°C	30 sec		

Table 5: Super-fast 2-step cyc	ng conditions. Sensitivity may be affected by fast
cycling conditions.	

	Step	Temperature	Duration	Cycle
SUPER-FAST	Activate enzyme ^a	95°C	2 min	1
	Denature	95°C	5 sec	40
	Anneal/extend ^b	60°C	15 sec	40

^{a.} Can be reduced to 30 sec for non-complex templates.

^{b.} Choose an appropriate annealing temperature for the primer set used.

For Research Use Only. Not for use in diagnostics procedures.

Other product sizes, combinations and customized solutions are available. Please look at www.ampliqon.com or ask for our complete product list for PCR Enzymes. For customized solutions please contact us.

Made in Denmark