TROUBLESHOOTING The table below covers most problems and solutions hereof, experienced when handling PCR experiments. To avoid spending a lot of time on optimisation of PCR setup we recommend the usage of Ampliqon Ammonium Buffer for most PCR applications. Ammonium Buffer is a very robust 10x PCR buffer, resulting in high yield of PCR products and minimises the need for optimisation of Mg²⁺ and/or annealing temperatures. | Observed problem | Possible cause | Solution | |------------------------------------|---|--| | PCR product does not | Contamination by nucleases | Try again with fresh reagents | | have the correct size | Mispriming | Test that primers do not have additional complementary regions within the template DNA | | | Non optimal MgCl₂ concentration | Adjust MgCl₂ concentration as advised in product data
sheet. | | | Non optimal annealing temperature | Retest Tm values of primers | | Absence of PCR product | Low primer specificity | Verify that primers are complementary to the correct target
sequence | | | Too low primer concentration | ■ Adjust in the range 0.1 – 1 µM | | | Suboptimal reaction conditions | Optimise annealing by running a temperature gradient Adjust MgCl₂ concentration as advised in product data sheet | | | Poor template quality | Test DNA using gel electrophoresis before and after addition of MgCl₂. Check 260/280 ratio of DNA template | | | Missing a reaction component | Make a new PCR mix | | | Inhibitors in the reaction | Ensure that template DNA is purified or decrease sample
volume. | | | PCR run is non optimal | Add more cycles Recheck the PCR program Recalibrate heating block | | | Your template or target is complex | For GC-rich sequences or other complex DNA targets opti-
mize conditions using GC-rich Target kit. | | Smears or multiple band on the gel | Premature replication | Use TEMPase Hot Start DNA Polymerase insteadSet PCR reaction up on ice. | | | Too low annealing temperature | Increase annealing temperature If not already using Ammonium Buffer, then shift to this buffer. | | | Excess primers | Adjust in the range 0.1 – 1 μM | | | Non optimal MgCl ₂ concentration | Adjust MgCl₂ concentration as advised in product data sheet | | | Non optimal primer design | Ensure that primers are non-complementary Increase length of primers Avoid GC-rich 3' ends | | | Contamination with non-template DNA | Always use filer tips, PCR grade water. Use separate areas for PCR reaction setup, DNA preparation, PCR thermal cycling and gel electrophoresis | | | Incorrect template concentration | Adjust template concentration as advised in product data
sheet. | | Sequence errors | Low fidelity polymerase | Use AQ97 High Fidelity DNA Polymerase | | | Template DNA has been damaged | Prepare a new DNA template Limit the exposure of template DNA to UV Lower initial heating time | | | Suboptimal reaction conditions | Decrease extension time Decrease MgCl₂ concentration Lower the amount of cycles | | | Problems with nucleotide composition | Make a fresh solution of nucleotide mix |