

TROUBLESHOOTING

The table below covers most problems and solutions hereof, experienced when handling PCR experiments.

To avoid spending a lot of time on optimisation of PCR setup we recommend the usage of Ampliqon Ammonium Buffer for most PCR applications. Ammonium Buffer is a very robust 10x PCR buffer, resulting in high yield of PCR products and minimises the need for optimisation of Mg²⁺ and/or annealing temperatures.

Observed problem	Possible cause	Solution
PCR product does not	Contamination by nucleases	 Try again with fresh reagents
have the correct size	Mispriming	 Test that primers do not have additional complementary regions within the template DNA
	Non optimal MgCl₂ concentration	 Adjust MgCl₂ concentration as advised in product data sheet.
	Non optimal annealing temperature	 Retest Tm values of primers
Absence of PCR product	Low primer specificity	 Verify that primers are complementary to the correct target sequence
	Too low primer concentration	■ Adjust in the range 0.1 – 1 µM
	Suboptimal reaction conditions	 Optimise annealing by running a temperature gradient Adjust MgCl₂ concentration as advised in product data sheet
	Poor template quality	 Test DNA using gel electrophoresis before and after addition of MgCl₂. Check 260/280 ratio of DNA template
	Missing a reaction component	Make a new PCR mix
	Inhibitors in the reaction	 Ensure that template DNA is purified or decrease sample volume.
	PCR run is non optimal	 Add more cycles Recheck the PCR program Recalibrate heating block
	Your template or target is complex	 For GC-rich sequences or other complex DNA targets opti- mize conditions using GC-rich Target kit.
Smears or multiple band on the gel	Premature replication	Use TEMPase Hot Start DNA Polymerase insteadSet PCR reaction up on ice.
	Too low annealing temperature	 Increase annealing temperature If not already using Ammonium Buffer, then shift to this buffer.
	Excess primers	 Adjust in the range 0.1 – 1 μM
	Non optimal MgCl ₂ concentration	 Adjust MgCl₂ concentration as advised in product data sheet
	Non optimal primer design	 Ensure that primers are non-complementary Increase length of primers Avoid GC-rich 3' ends
	Contamination with non-template DNA	 Always use filer tips, PCR grade water. Use separate areas for PCR reaction setup, DNA preparation, PCR thermal cycling and gel electrophoresis
	Incorrect template concentration	 Adjust template concentration as advised in product data sheet.
Sequence errors	Low fidelity polymerase	 Use AQ97 High Fidelity DNA Polymerase
	Template DNA has been damaged	 Prepare a new DNA template Limit the exposure of template DNA to UV Lower initial heating time
	Suboptimal reaction conditions	Decrease extension time Decrease MgCl₂ concentration Lower the amount of cycles
	Problems with nucleotide composition	 Make a fresh solution of nucleotide mix